РП алгебра и начала математического анализа (углубленный уровень), 11а класс, составитель Фирсова О.В

МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ
МИНИСТЕРСТВО ОБРАЗОВАНИЯ КУЗБАССА
МУНИЦИПАЛЬНОЕ КАЗЕННОЕ УЧРЕЖДЕНИЕ "УПРАВЛЕНИЕ
ОБРАЗОВАНИЕМ МЫСКОВСКОГО ГОРОДСКОГО ОКРУГА»
МАОУ СОШ № 1 Мысковского ГО
УТВЕРЖДЕНО
Директор
ТИМОФЕЕВ К.П.
ПРОТОКОЛ ПЕДСОВЕТА
№1 от «30» АВГУСТА
2024 г.

РАБОЧАЯ ПРОГРАММА
(ID 590254)
учебного предмета «Алгебра и начала математического анализа.
Углубленный уровень»
для обучающихся 11 класса

Составитель: Фирсова О.В.

Мысковский городской округ 2024

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
Учебный курс «Алгебра и начала математического анализа» является
одним из наиболее значимых в программе среднего общего образования,
поскольку, с одной стороны, он обеспечивает инструментальную базу для
изучения всех естественно-научных курсов, а с другой стороны, формирует
логическое и абстрактное мышление обучающихся на уровне, необходимом
для освоения информатики, обществознания, истории, словесности и других
дисциплин. В рамках данного учебного курса обучающиеся овладевают
универсальным языком современной науки, которая формулирует свои
достижения в математической форме.
Учебный курс алгебры и начал математического анализа закладывает
основу для успешного овладения законами физики, химии, биологии,
понимания основных тенденций развития экономики и общественной жизни,
позволяет ориентироваться в современных цифровых и компьютерных
технологиях, уверенно использовать их для дальнейшего образования и в
повседневной жизни. В то же время овладение абстрактными и логически
строгими конструкциями алгебры и математического анализа развивает
умение находить закономерности, обосновывать истинность, доказывать
утверждения с помощью индукции и рассуждать дедуктивно, использовать
обобщение и конкретизацию, абстрагирование и аналогию, формирует
креативное и критическое мышление.
В ходе изучения учебного курса «Алгебра и начала математического
анализа» обучающиеся получают новый опыт решения прикладных задач,
самостоятельного построения математических моделей реальных ситуаций,
интерпретации
полученных
решений,
знакомятся
с
примерами
математических закономерностей в природе, науке и искусстве, с
выдающимися математическими открытиями и их авторами.
Учебный курс обладает значительным воспитательным потенциалом,
который реализуется как через учебный материал, способствующий
формированию научного мировоззрения, так и через специфику учебной
деятельности, требующей продолжительной концентрации внимания,
самостоятельности, аккуратности и ответственности за полученный
результат.
В основе методики обучения алгебре и началам математического
анализа лежит деятельностный принцип обучения.
В структуре учебного курса «Алгебра и начала математического
анализа» выделены следующие содержательно-методические линии: «Числа
и вычисления», «Функции и графики», «Уравнения и неравенства», «Начала
математического анализа», «Множества и логика». Все основные

содержательно-методические линии изучаются на протяжении двух лет
обучения на уровне среднего общего образования, естественно дополняя
друг друга и постепенно насыщаясь новыми темами и разделами. Данный
учебный курс является интегративным, поскольку объединяет в себе
содержание нескольких математических дисциплин, таких как алгебра,
тригонометрия, математический анализ, теория множеств, математическая
логика и другие. По мере того как обучающиеся овладевают всё более
широким математическим аппаратом, у них последовательно формируется и
совершенствуется умение строить математическую модель реальной
ситуации, применять знания, полученные при изучении учебного курса, для
решения самостоятельно сформулированной математической задачи, а затем
интерпретировать свой ответ.
Содержательно-методическая линия «Числа и вычисления» завершает
формирование навыков использования действительных чисел, которое было
начато на уровне основного общего образования. На уровне среднего общего
образования особое внимание уделяется формированию навыков
рациональных вычислений, включающих в себя использование различных
форм записи числа, умение делать прикидку, выполнять приближённые
вычисления, оценивать числовые выражения, работать с математическими
константами. Знакомые обучающимся множества натуральных, целых,
рациональных и действительных чисел дополняются множеством
комплексных чисел. В каждом из этих множеств рассматриваются
свойственные ему специфические задачи и операции: деление нацело,
оперирование остатками на множестве целых чисел, особые свойства
рациональных и иррациональных чисел, арифметические операции, а также
извлечение корня натуральной степени на множестве комплексных чисел.
Благодаря последовательному расширению круга используемых чисел и
знакомству с возможностями их применения для решения различных задач
формируется представление о единстве математики как науки и её роли в
построении моделей реального мира, широко используются обобщение и
конкретизация.
Линия «Уравнения и неравенства» реализуется на протяжении всего
обучения на уровне среднего общего образования, поскольку в каждом
разделе Программы предусмотрено решение соответствующих задач. В
результате обучающиеся овладевают различными методами решения
рациональных, иррациональных, показательных, логарифмических и
тригонометрических уравнений, неравенств и систем, а также задач,
содержащих параметры. Полученные умения широко используются при
исследовании функций с помощью производной, при решении прикладных

задач и задач на нахождение наибольших и наименьших значений функции.
Данная содержательная линия включает в себя также формирование умений
выполнять расчёты по формулам, преобразования рациональных,
иррациональных и тригонометрических выражений, а также выражений,
содержащих степени и логарифмы. Благодаря изучению алгебраического
материала происходит дальнейшее развитие алгоритмического и
абстрактного мышления обучающихся, формируются навыки дедуктивных
рассуждений,
работы
с
символьными
формами,
представления
закономерностей и зависимостей в виде равенств и неравенств. Алгебра
предлагает эффективные инструменты для решения практических и
естественно-научных задач, наглядно демонстрирует свои возможности как
языка науки.
Содержательно-методическая линия «Функции и графики» тесно
переплетается с другими линиями учебного курса, поскольку в каком-то
смысле задаёт последовательность изучения материала. Изучение степенной,
показательной, логарифмической и тригонометрических функций, их свойств
и графиков, использование функций для решения задач из других учебных
предметов и реальной жизни тесно связано как с математическим анализом,
так и с решением уравнений и неравенств. При этом большое внимание
уделяется формированию умения выражать формулами зависимости между
различными величинами, исследовать полученные функции, строить их
графики. Материал этой содержательной линии нацелен на развитие умений
и навыков, позволяющих выражать зависимости между величинами в
различной форме: аналитической, графической и словесной. Его изучение
способствует развитию алгоритмического мышления, способности к
обобщению и конкретизации, использованию аналогий.
Содержательная линия «Начала математического анализа» позволяет
существенно расширить круг как математических, так и прикладных задач,
доступных обучающимся, так как у них появляется возможность строить
графики сложных функций, определять их наибольшие и наименьшие
значения, вычислять площади фигур и объёмы тел, находить скорости и
ускорения процессов. Данная содержательная линия открывает новые
возможности построения математических моделей реальных ситуаций,
позволяет находить наилучшее решение в прикладных, в том числе
социально-экономических, задачах. Знакомство с основами математического
анализа способствует развитию абстрактного, формально-логического и
креативного мышления, формированию умений распознавать проявления
законов математики в науке, технике и искусстве. Обучающиеся узнают о

выдающихся результатах, полученных в ходе развития математики как
науки, и об их авторах.
Содержательно-методическая линия «Множества и логика» включает в
себя элементы теории множеств и математической логики. Теоретикомножественные представления пронизывают весь курс школьной математики
и предлагают наиболее универсальный язык, объединяющий все разделы
математики и её приложений, они связывают разные математические
дисциплины и их приложения в единое целое. Поэтому важно дать
возможность обучающемуся понимать теоретико-множественный язык
современной математики и использовать его для выражения своих мыслей.
Другим важным признаком математики как науки следует признать
свойственную ей строгость обоснований и следование определённым
правилам
построения
доказательств.
Знакомство
с
элементами
математической логики способствует развитию логического мышления
обучающихся, позволяет им строить свои рассуждения на основе логических
правил, формирует навыки критического мышления.
В учебном курсе «Алгебра и начала математического анализа»
присутствуют основы математического моделирования, которые призваны
способствовать формированию навыков построения моделей реальных
ситуаций, исследования этих моделей с помощью аппарата алгебры и
математического анализа, интерпретации полученных результатов. Такие
задания вплетены в каждый из разделов программы, поскольку весь материал
учебного курса широко используется для решения прикладных задач. При
решении реальных практических задач обучающиеся развивают
наблюдательность, умение находить закономерности, абстрагироваться,
использовать аналогию, обобщать и конкретизировать проблему.
Деятельность по формированию навыков решения прикладных задач
организуется в процессе изучения всех тем учебного курса «Алгебра и начала
математического анализа».
На изучение учебного курса «Алгебра и начала математического
анализа» отводится 272 часа: в 10 классе – 136 часов (4 часа в неделю), в 11
классе – 136 часов (4 часа в неделю).

СОДЕРЖАНИЕ ОБУЧЕНИЯ
11 КЛАСС
Числа и вычисления
Натуральные и целые числа. Применение признаков делимости целых
чисел, наибольший общий делитель (далее – НОД) и наименьшее общее
кратное (далее – НОК), остатков по модулю, алгоритма Евклида для решения
задач в целых числах.
Комплексные числа. Алгебраическая и тригонометрическая формы
записи комплексного числа. Арифметические операции с комплексными
числами. Изображение комплексных чисел на координатной плоскости.
Формула Муавра. Корни n-ой степени из комплексного числа. Применение
комплексных чисел для решения физических и геометрических задач.
Уравнения и неравенства
Система и совокупность уравнений и неравенств. Равносильные
системы и системы-следствия. Равносильные неравенства.
Отбор
корней
тригонометрических
уравнений
с
помощью
тригонометрической окружности. Решение тригонометрических неравенств.
Основные методы решения показательных и логарифмических
неравенств.
Основные методы решения иррациональных неравенств.
Основные методы решения систем и совокупностей рациональных,
иррациональных, показательных и логарифмических уравнений.
Уравнения, неравенства и системы с параметрами.
Применение уравнений, систем и неравенств к решению
математических задач и задач из различных областей науки и реальной
жизни, интерпретация полученных результатов.
Функции и графики
График композиции функций. Геометрические образы уравнений и
неравенств на координатной плоскости.
Тригонометрические функции, их свойства и графики.
Графические методы решения уравнений и неравенств. Графические
методы решения задач с параметрами.
Использование графиков функций для исследования процессов и
зависимостей, которые возникают при решении задач из других учебных
предметов и реальной жизни.
Начала математического анализа

Применение производной к исследованию функций на монотонность и
экстремумы. Нахождение наибольшего и наименьшего значений
непрерывной функции на отрезке.
Применение производной для нахождения наилучшего решения в
прикладных задачах, для определения скорости и ускорения процесса,
заданного формулой или графиком.
Первообразная, основное свойство первообразных. Первообразные
элементарных функций. Правила нахождения первообразных.
Интеграл.
Геометрический
смысл
интеграла.
Вычисление
определённого интеграла по формуле Ньютона-Лейбница.
Применение интеграла для нахождения площадей плоских фигур и
объёмов геометрических тел.
Примеры решений дифференциальных уравнений. Математическое
моделирование реальных процессов с помощью дифференциальных
уравнений.

ПЛАНИРУЕМЫЕ
«АЛГЕБРА
И
(УГЛУБЛЕННЫЙ
ОБРАЗОВАНИЯ

РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГО КУРСА
НАЧАЛА
МАТЕМАТИЧЕСКОГО
АНАЛИЗА»
УРОВЕНЬ) НА УРОВНЕ СРЕДНЕГО ОБЩЕГО

ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ
1) гражданского воспитания:
сформированность гражданской позиции обучающегося как активного и
ответственного
члена
российского
общества,
представление
о
математических основах функционирования различных структур, явлений,
процедур гражданского общества (выборы, опросы и другое), умение
взаимодействовать с социальными институтами в соответствии с их
функциями и назначением;
2) патриотического воспитания:
сформированность российской гражданской идентичности, уважения к
прошлому и настоящему российской математики, ценностное отношение к
достижениям российских математиков и российской математической школы,
использование этих достижений в других науках, технологиях, сферах
экономики;
3) духовно-нравственного воспитания:
осознание духовных ценностей российского народа, сформированность
нравственного сознания, этического поведения, связанного с практическим
применением достижений науки и деятельностью учёного, осознание
личного вклада в построение устойчивого будущего;
4) эстетического воспитания:
эстетическое отношение к миру, включая эстетику математических
закономерностей, объектов, задач, решений, рассуждений, восприимчивость
к математическим аспектам различных видов искусства;
5) физического воспитания:
сформированность умения применять математические знания в
интересах здорового и безопасного образа жизни, ответственное отношение к
своему здоровью (здоровое питание, сбалансированный режим занятий и
отдыха, регулярная физическая активность), физическое совершенствование
при занятиях спортивно-оздоровительной деятельностью;
6) трудового воспитания:
готовность к труду, осознание ценности трудолюбия, интерес к
различным сферам профессиональной деятельности, связанным с
математикой и её приложениями, умение совершать осознанный выбор
будущей профессии и реализовывать собственные жизненные планы,

готовность и способность к математическому образованию и
самообразованию на протяжении всей жизни, готовность к активному
участию в решении практических задач математической направленности;
7) экологического воспитания:
сформированность экологической культуры, понимание влияния
социально-экономических процессов на состояние природной и социальной
среды, осознание глобального характера экологических проблем, ориентация
на применение математических знаний для решения задач в области
окружающей среды, планирование поступков и оценки их возможных
последствий для окружающей среды;
8) ценности научного познания:
сформированность мировоззрения, соответствующего современному
уровню развития науки и общественной практики, понимание
математической науки как сферы человеческой деятельности, этапов её
развития и значимости для развития цивилизации, овладение языком
математики и математической культурой как средством познания мира,
готовность осуществлять проектную и исследовательскую деятельность
индивидуально и в группе.
МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ
Познавательные универсальные учебные действия
Базовые логические действия:
выявлять и характеризовать существенные признаки математических
объектов, понятий, отношений между понятиями, формулировать
определения понятий, устанавливать существенный признак классификации,
основания для обобщения и сравнения, критерии проводимого анализа;
воспринимать,
формулировать
и
преобразовывать
суждения:
утвердительные и отрицательные, единичные, частные и общие, условные;
выявлять математические закономерности, взаимосвязи и противоречия
в фактах, данных, наблюдениях и утверждениях, предлагать критерии для
выявления закономерностей и противоречий;
делать выводы с использованием законов логики, дедуктивных и
индуктивных умозаключений, умозаключений по аналогии;
проводить самостоятельно доказательства математических утверждений
(прямые и от противного), выстраивать аргументацию, приводить примеры и
контрпримеры, обосновывать собственные суждения и выводы;
выбирать способ решения учебной задачи (сравнивать несколько
вариантов решения, выбирать наиболее подходящий с учётом
самостоятельно выделенных критериев).

Базовые исследовательские действия:
использовать вопросы как исследовательский инструмент познания,
формулировать
вопросы,
фиксирующие
противоречие,
проблему,
устанавливать искомое и данное, формировать гипотезу, аргументировать
свою позицию, мнение;
проводить самостоятельно спланированный эксперимент, исследование
по установлению особенностей математического объекта, явления, процесса,
выявлению зависимостей между объектами, явлениями, процессами;
самостоятельно формулировать обобщения и выводы по результатам
проведённого наблюдения, исследования, оценивать достоверность
полученных результатов, выводов и обобщений;
прогнозировать возможное развитие процесса, а также выдвигать
предположения о его развитии в новых условиях.
Работа с информацией:
выявлять дефициты информации, данных, необходимых для ответа на
вопрос и для решения задачи;
выбирать информацию из источников различных типов, анализировать,
систематизировать и интерпретировать информацию различных видов и
форм представления;
структурировать информацию, представлять её в различных формах,
иллюстрировать графически;
оценивать
надёжность
информации
по
самостоятельно
сформулированным критериям.
Коммуникативные универсальные учебные действия
Общение:
воспринимать и формулировать суждения в соответствии с условиями и
целями общения, ясно, точно, грамотно выражать свою точку зрения в
устных и письменных текстах, давать пояснения по ходу решения задачи,
комментировать полученный результат;
в ходе обсуждения задавать вопросы по существу обсуждаемой темы,
проблемы, решаемой задачи, высказывать идеи, нацеленные на поиск
решения, сопоставлять свои суждения с суждениями других участников
диалога, обнаруживать различие и сходство позиций, в корректной форме
формулировать разногласия, свои возражения;
представлять результаты решения задачи, эксперимента, исследования,
проекта, самостоятельно выбирать формат выступления с учётом задач
презентации и особенностей аудитории.
Регулятивные универсальные учебные действия

Самоорганизация:
составлять план, алгоритм решения задачи, выбирать способ решения с
учётом имеющихся ресурсов и собственных возможностей, аргументировать
и корректировать варианты решений с учётом новой информации.
Самоконтроль, эмоциональный интеллект:
владеть навыками познавательной рефлексии как осознания
совершаемых действий и мыслительных процессов, их результатов, владеть
способами самопроверки, самоконтроля процесса и результата решения
математической задачи;
предвидеть трудности, которые могут возникнуть при решении задачи,
вносить коррективы в деятельность на основе новых обстоятельств, данных,
найденных ошибок, выявленных трудностей;
оценивать соответствие результата цели и условиям, объяснять причины
достижения или недостижения результатов деятельности, находить ошибку,
давать оценку приобретённому опыту.
Совместная деятельность:
понимать и использовать преимущества командной и индивидуальной
работы при решении учебных задач, принимать цель совместной
деятельности, планировать организацию совместной работы, распределять
виды работ, договариваться, обсуждать процесс и результат работы,
обобщать мнения нескольких людей;
участвовать в групповых формах работы (обсуждения, обмен мнений,
«мозговые штурмы» и иные), выполнять свою часть работы и
координировать свои действия с другими членами команды, оценивать
качество своего вклада в общий продукт по критериям, сформулированным
участниками взаимодействия.
ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ
К концу обучения в 11 классе обучающийся получит следующие
предметные результаты по отдельным темам рабочей программы учебного
курса «Алгебра и начала математического анализа»:
Числа и вычисления:
свободно оперировать понятиями: натуральное и целое число,
множества натуральных и целых чисел, использовать признаки делимости
целых чисел, НОД и НОК натуральных чисел для решения задач, применять
алгоритм Евклида;
свободно оперировать понятием остатка по модулю, записывать
натуральные числа в различных позиционных системах счисления;

свободно оперировать понятиями: комплексное число и множество
комплексных чисел, представлять комплексные числа в алгебраической и
тригонометрической форме, выполнять арифметические операции с ними и
изображать на координатной плоскости.
Уравнения и неравенства:
свободно оперировать понятиями: иррациональные, показательные и
логарифмические неравенства, находить их решения с помощью
равносильных переходов;
осуществлять отбор корней при решении тригонометрического
уравнения;
свободно оперировать понятием тригонометрическое неравенство,
применять необходимые формулы для решения основных типов
тригонометрических неравенств;
свободно оперировать понятиями: система и совокупность уравнений и
неравенств, равносильные системы и системы-следствия, находить решения
системы и совокупностей рациональных, иррациональных, показательных и
логарифмических уравнений и неравенств;
решать
рациональные,
иррациональные,
показательные,
логарифмические и тригонометрические уравнения и неравенства,
содержащие модули и параметры;
применять графические методы для решения уравнений и неравенств, а
также задач с параметрами;
моделировать реальные ситуации на языке алгебры, составлять
выражения, уравнения, неравенства и их системы по условию задачи,
исследовать построенные модели с использованием аппарата алгебры,
интерпретировать полученный результат.
Функции и графики:
строить графики композиции функций с помощью элементарного
исследования и свойств композиции двух функций;
строить геометрические образы уравнений и неравенств на
координатной плоскости;
свободно оперировать понятиями: графики тригонометрических
функций;
применять функции для моделирования и исследования реальных
процессов.
Начала математического анализа:
использовать производную для исследования функции на монотонность
и экстремумы;

находить наибольшее и наименьшее значения функции непрерывной на
отрезке;
использовать производную для нахождения наилучшего решения в
прикладных, в том числе социально-экономических, задачах, для
определения скорости и ускорения процесса, заданного формулой или
графиком;
свободно оперировать понятиями: первообразная, определённый
интеграл, находить первообразные элементарных функций и вычислять
интеграл по формуле Ньютона-Лейбница;
находить площади плоских фигур и объёмы тел с помощью интеграла;
иметь представление о математическом моделировании на примере
составления дифференциальных уравнений;
решать прикладные задачи, в том числе социально-экономического и
физического характера, средствами математического анализа.

11 КЛАСС
Количество часов
№
п/п

Наименование разделов и тем
программы

Всего

Контрольные
работы

Практические
работы

Электронные
(цифровые)
образовательные
ресурсы

1

Исследование функций с помощью
производной

22

2

1

https://resh.edu.ru/

2

Первообразная и интеграл

12

1

1

https://resh.edu.ru/

3

Графики тригонометрических функций.
Тригонометрические неравенства

14

1

2

https://resh.edu.ru/

4

Иррациональные, показательные и
логарифмические неравенства

24

1

4

https://resh.edu.ru/

5

Комплексные числа

10

1

1

https://resh.edu.ru/

6

Натуральные и целые числа

10

1

1

https://resh.edu.ru/

7

Системы рациональных, иррациональных
показательных и логарифмических
уравнений

12

1

1

https://resh.edu.ru/

8

Задачи с параметрами

16

1

2

https://resh.edu.ru/

9

Повторение, обобщение, систематизация
знаний

16

2

1

https://resh.edu.ru/

136

11

14

ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ

11 КЛАСС
Количество часов
№
п/п

Тема урока

Всего

1

Применение производной к
исследованию функций на
монотонность и экстремумы

1

2

Применение производной к
исследованию функций на
монотонность и экстремумы

1

3

Применение производной к
исследованию функций на
монотонность и экстремумы

1

4

Применение производной к
исследованию функций на
монотонность и экстремумы

1

5

Применение производной к
исследованию функций на
монотонность и экстремумы

1

6

Применение производной к
исследованию функций на
монотонность и экстремумы

1

7

Входная АКС

1

8

Нахождение наибольшего и
наименьшего значения непрерывной

1

Контрольные
работы

Практические
работы

Дата
изучения

03.09.2024

03.09.2024

05.09.2024

05.09.2024

10.09.2024

10.09.2024
1

12.09.2024
12.09.2024

Электронные
цифровые
образовательные
ресурсы

https://resh.edu.ru/

https://resh.edu.ru/

https://resh.edu.ru/

https://resh.edu.ru/

https://resh.edu.ru/

https://resh.edu.ru/

https://resh.edu.ru/
https://resh.edu.ru/

функции на отрезке
9

Нахождение наибольшего и
наименьшего значения непрерывной
функции на отрезке

1

10

Нахождение наибольшего и
наименьшего значения непрерывной
функции на отрезке

1

11

Нахождение наибольшего и
наименьшего значения непрерывной
функции на отрезке

1

12

Практическая работа. Нахождение
наибольшего и наименьшего значения
непрерывной функции на отрезке

1

13

Применение производной для
нахождения наилучшего решения в
прикладных задачах

1

14

Применение производной для
нахождения наилучшего решения в
прикладных задачах

1

15

Применение производной для
определения скорости и ускорения
процесса, заданного формулой или
графиком

1

16

Применение производной для
определения скорости и ускорения
процесса, заданного формулой или
графиком

1

17

Композиция функций

1

17.09.2024

17.09.2024

19.09.2024

1

19.09.2024

24.09.2024

24.09.2024

26.09.2024

26.09.2024

https://resh.edu.ru/

https://resh.edu.ru/

https://resh.edu.ru/

https://resh.edu.ru/

https://resh.edu.ru/

https://resh.edu.ru/

https://resh.edu.ru/

https://resh.edu.ru/

https://resh.edu.ru/

01.10.2024
18

Композиция функций

1

19

Композиция функций

1

20

Геометрические образы уравнений на
координатной плоскости

1

21

Геометрические образы уравнений на
координатной плоскости

1

22

Контрольная работа: "Исследование
функций с помощью производной"

1

23

Р.Н.О. Первообразная, основное
свойство первообразных

1

24

Первообразные элементарных функций.
Правила нахождения первообразных

1

25

Первообразные элементарных функций.
Правила нахождения первообразных

1

26

Интеграл. Геометрический смысл
интеграла

1

27

Вычисление определённого интеграла
по формуле Ньютона-Лейбница

1

28

Практическая работа. Вычисление
определённого интеграла по формуле
Ньютона-Лейбница

1

29

Применение интеграла для нахождения
площадей плоских фигур

1

30

Применение интеграла для нахождения
объёмов геометрических тел

1

01.10.2024
03.10.2024
03.10.2024
08.10.2024
1

08.10.2024
10.10.2024
10.10.2024
15.10.2024
15.10.2024
17.10.2024
1

17.10.2024

22.10.2024
22.10.2024

https://resh.edu.ru/
https://resh.edu.ru/
https://resh.edu.ru/
https://resh.edu.ru/
https://resh.edu.ru/
https://resh.edu.ru/
https://resh.edu.ru/
https://resh.edu.ru/
https://resh.edu.ru/
https://resh.edu.ru/

https://resh.edu.ru/

https://resh.edu.ru/
https://resh.edu.ru/

31

Примеры решений дифференциальных
уравнений

1

32

Примеры решений дифференциальных
уравнений

1

33

Математическое моделирование
реальных процессов с помощью
дифференциальных уравнений

1

34

Контрольная работа: "Первообразная и
интеграл"

1

35

Р.Н.О. Тригонометрические функции,
их свойства и графики

1

36

Тригонометрические функции, их
свойства и графики

1

37

Тригонометрические функции, их
свойства и графики

1

38

Тригонометрические функции, их
свойства и графики

1

39

Практическая работа.
Тригонометрические функции, их
свойства и графики

1

40

Отбор корней тригонометрических
уравнений с помощью
тригонометрической окружности

1

41

Отбор корней тригонометрических
уравнений с помощью
тригонометрической окружности

1

42

Отбор корней тригонометрических
уравнений с помощью

1

24.10.2024
24.10.2024

05.11.2024
1

05.11.2024
07.11.2024
07.11.2024
12.11.2024
12.11.2024
1

14.11.2024

14.11.2024

19.11.2024

19.11.2024

https://resh.edu.ru/
https://resh.edu.ru/

https://resh.edu.ru/

https://resh.edu.ru/
https://resh.edu.ru/
https://resh.edu.ru/
https://resh.edu.ru/
https://resh.edu.ru/

https://resh.edu.ru/

https://resh.edu.ru/

https://resh.edu.ru/

https://resh.edu.ru/

тригонометрической окружности

43

Практическая работа. Отбор корней
тригонометрических уравнений с
помощью тригонометрической
окружности

1

44

Решение тригонометрических
неравенств

1

45

Решение тригонометрических
неравенств

1

46

Решение тригонометрических
неравенств

1

47

Решение тригонометрических
неравенств

1

48

Контрольная работа: "Графики
тригонометрических функций.
Тригонометрические неравенства"

1

49

Основные методы решения
показательных неравенств

1

50

Основные методы решения
показательных неравенств

1

51

Основные методы решения
показательных неравенств

1

52

Практическая работа. Основные методы
решения показательных неравенств

1

53

Основные методы решения
логарифмических неравенств

1

54

Основные методы решения
логарифмических неравенств

1

1

21.11.2024

21.11.2024
26.11.2024
26.11.2024
28.11.2024
1

28.11.2024

03.12.2024
03.12.2024
05.12.2024
1

05.12.2024
10.12.2024
10.12.2024

https://resh.edu.ru/

https://resh.edu.ru/
https://resh.edu.ru/
https://resh.edu.ru/
https://resh.edu.ru/

https://resh.edu.ru/

https://resh.edu.ru/
https://resh.edu.ru/
https://resh.edu.ru/
https://resh.edu.ru/
https://resh.edu.ru/
https://resh.edu.ru/

55

Основные методы решения
логарифмических неравенств

1

56

Практическая работа. Основные методы
решения логарифмических неравенств

1

57

Основные методы решения
иррациональных неравенств

1

58

Основные методы решения
иррациональных неравенств

1

59

Основные методы решения
иррациональных неравенств

1

60

Основные методы решения
иррациональных неравенств

1

61

Графические методы решения
иррациональных уравнений

1

62

Графические методы решения
иррациональных уравнений

1

63

Практическая работа. Графические
методы решения показательных
уравнений

1

64

Графические методы решения
показательных неравенств

1

65

Графические методы решения
логарифмических уравнений

1

66

Графические методы решения
логарифмических неравенств

1

67

Графические методы решения
логарифмических неравенств

1

68

Графические методы решения

1

12.12.2024
1

12.12.2024
17.12.2024
17.12.2024
19.12.2024
19.12.2024
24.12.2024
24.12.2024

1

26.12.2024

26.12.2024
09.01.2025
09.01.2025
14.01.2025

https://resh.edu.ru/
https://resh.edu.ru/
https://resh.edu.ru/
https://resh.edu.ru/
https://resh.edu.ru/
https://resh.edu.ru/
https://resh.edu.ru/
https://resh.edu.ru/

https://resh.edu.ru/

https://resh.edu.ru/
https://resh.edu.ru/
https://resh.edu.ru/
https://resh.edu.ru/
https://resh.edu.ru/

показательных и логарифмических
уравнений

14.01.2025

69

Практическая работа. Графические
методы решения показательных и
логарифмических уравнений

1

70

Графические методы решения
показательных и логарифмических
неравенств

1

71

Графические методы решения
показательных и логарифмических
неравенств

1

72

Контрольная работа: "Иррациональные,
показательные и логарифмические
неравенства"

1

73

Р.Н.О. Комплексные числа.
Алгебраическая и тригонометрическая
формы записи комплексного числа

1

74

Комплексные числа. Алгебраическая и
тригонометрическая формы записи
комплексного числа

1

75

Арифметические операции с
комплексными числами

1

76

Арифметические операции с
комплексными числами

1

77

Практическая работа. Изображение
комплексных чисел на координатной
плоскости

1

78

Изображение комплексных чисел на

1

1

16.01.2025

16.01.2025

21.01.2025

1

21.01.2025

23.01.2025

23.01.2025

28.01.2025
28.01.2025
1

30.01.2025

https://resh.edu.ru/

https://resh.edu.ru/

https://resh.edu.ru/

https://resh.edu.ru/

https://resh.edu.ru/

https://resh.edu.ru/

https://resh.edu.ru/
https://resh.edu.ru/

https://resh.edu.ru/
https://resh.edu.ru/

координатной плоскости

30.01.2025

79

Формула Муавра. Корни n-ой степени
из комплексного числа

1

80

Формула Муавра. Корни n-ой степени
из комплексного числа

1

81

Применение комплексных чисел для
решения физических и геометрических
задач

1

82

Контрольная работа: "Комплексные
числа"

1

83

Р.Н.О. Натуральные и целые числа

1

84

Натуральные и целые числа

1

85

Применение признаков делимости
целых чисел

1

86

Применение признаков делимости
целых чисел

1

87

Применение признаков делимости
целых чисел: НОД и НОК

1

88

Практическая работа. Применение
признаков делимости целых чисел:
НОД и НОК

1

89

Применение признаков делимости
целых чисел: остатки по модулю

1

90

Применение признаков делимости
целых чисел: остатки по модулю

1

91

Применение признаков делимости

1

04.02.2025
04.02.2025

06.02.2025
1

06.02.2025
11.02.2025
11.02.2025
13.02.2025
13.02.2025
18.02.2025
1

18.02.2025

20.02.2025
20.02.2025

https://resh.edu.ru/
https://resh.edu.ru/

https://resh.edu.ru/

https://resh.edu.ru/
https://resh.edu.ru/
https://resh.edu.ru/
https://resh.edu.ru/
https://resh.edu.ru/
https://resh.edu.ru/

https://resh.edu.ru/

https://resh.edu.ru/
https://resh.edu.ru/
https://resh.edu.ru/

целых чисел: алгоритм Евклида для
решения задач в целых числах

25.02.2025

92

Контрольная работа: "Теория целых
чисел"

1

93

Р.Н.О. Система и совокупность
уравнений. Равносильные системы и
системы-следствия

1

94

Система и совокупность уравнений.
Равносильные системы и системыследствия

1

95

Основные методы решения систем и
совокупностей рациональных
уравнений

1

96

Основные методы решения систем и
совокупностей иррациональных
уравнений

1

97

Основные методы решения систем и
совокупностей показательных
уравнений

1

98

Основные методы решения систем и
совокупностей показательных
уравнений

1

99

Основные методы решения систем и
совокупностей логарифмических
уравнений

1

100

Практическая работа. Основные методы
решения систем и совокупностей
логарифмических уравнений

1

1

25.02.2025

27.02.2025

27.02.2025

04.03.2025

04.03.2025

06.03.2025

06.03.2025

11.03.2025

1

11.03.2025

https://resh.edu.ru/

https://resh.edu.ru/

https://resh.edu.ru/

https://resh.edu.ru/

https://resh.edu.ru/

https://resh.edu.ru/

https://resh.edu.ru/

https://resh.edu.ru/

https://resh.edu.ru/

101

Применение систем к решению
математических задач и задач из
различных областей науки и реальной
жизни, интерпретация полученных
результатов

1

102

Применение систем к решению
математических задач и задач из
различных областей науки и реальной
жизни, интерпретация полученных
результатов

1

103

Применение неравенств к решению
математических задач и задач из
различных областей науки и реальной
жизни, интерпретация полученных
результатов

1

104

Контрольная работа: "Системы
рациональных, иррациональных
показательных и логарифмических
уравнений"

1

105

Р.Н.О. Рациональные уравнения с
параметрами

1

106

Рациональные неравенства с
параметрами

1

107

Рациональные системы с параметрами

1

108

Иррациональные уравнения,
неравенства с параметрами

1

109

Практическая работа. Иррациональные

1

13.03.2025

13.03.2025

18.03.2025

1

18.03.2025

20.03.2025
20.03.2025
01.04.2025
01.04.2025
1

https://resh.edu.ru/

https://resh.edu.ru/

https://resh.edu.ru/

https://resh.edu.ru/

https://resh.edu.ru/
https://resh.edu.ru/
https://resh.edu.ru/
https://resh.edu.ru/
https://resh.edu.ru/

системы с параметрами

03.04.2025

110

Показательные уравнения, неравенства
с параметрами

1

111

Показательные системы с параметрами

1

112

Логарифмические уравнения,
неравенства с параметрами

1

113

Логарифмические системы с
параметрами

1

114

Тригонометрические уравнения с
параметрами

1

115

Тригонометрические неравенства с
параметрами

1

116

Практическая работа.
Тригонометрические системы с
параметрами

1

117

Построение и исследование
математических моделей реальных
ситуаций с помощью уравнений с
параметрами

1

118

Построение и исследование
математических моделей реальных
ситуаций с помощью систем уравнений
с параметрами

1

119

Построение и исследование
математических моделей реальных
ситуаций с помощью систем уравнений
с параметрами

1

03.04.2025
08.04.2025
08.04.2025
10.04.2025
10.04.2025
15.04.2025
1

15.04.2025

17.04.2025

17.04.2025

22.04.2025

https://resh.edu.ru/
https://resh.edu.ru/
https://resh.edu.ru/
https://resh.edu.ru/
https://resh.edu.ru/
https://resh.edu.ru/

https://resh.edu.ru/

https://resh.edu.ru/

https://resh.edu.ru/

https://resh.edu.ru/

120

Контрольная работа: "Задачи с
параметрами"

1

121

Р.Н.О. Повторение, обобщение,
систематизация знаний: "Уравнения"

1

122

Повторение, обобщение,
систематизация знаний: "Уравнения"

1

123

Повторение, обобщение,
систематизация знаний: "Уравнения.
Системы уравнений"

1

124

Повторение, обобщение,
систематизация знаний: "Неравенства"

1

125

Повторение, обобщение,
систематизация знаний: "Неравенства"

1

126

Практическая работа. Повторение,
обобщение, систематизация знаний:
"Неравенства"

1

127

Повторение, обобщение,
систематизация знаний: "Производная и
её применение"

1

128

Повторение, обобщение,
систематизация знаний: "Производная и
её применение"

1

129

Повторение, обобщение,
систематизация знаний: "Производная и
её применение"

1

130

Повторение, обобщение,
систематизация знаний: "Интеграл и его
применение"

1

1

22.04.2025
24.04.2025
24.04.2025

29.04.2025

29.04.2025
06.05.2025
1

06.05.2025

13.05.2025

13.05.2025

15.05.2025

15.05.2025

https://resh.edu.ru/
https://resh.edu.ru/
https://resh.edu.ru/

https://resh.edu.ru/

https://resh.edu.ru/
https://resh.edu.ru/

https://resh.edu.ru/

https://resh.edu.ru/

https://resh.edu.ru/

https://resh.edu.ru/

https://resh.edu.ru/

131

Повторение, обобщение,
систематизация знаний: "Функции"

1

132

Повторение, обобщение,
систематизация знаний: "Функции"

1

133

Повторение, обобщение,
систематизация знаний: "Функции"

1

134

Итоговая контрольная работа

1

1

135

Итоговая контрольная работа

1

1

136

Повторение, обобщение,
систематизация знаний

1

ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО
ПРОГРАММЕ

136

20.05.2025
20.05.2025
22.05.2025
22.05.2025

https://resh.edu.ru/
https://resh.edu.ru/
https://resh.edu.ru/
https://resh.edu.ru/
https://resh.edu.ru/
https://resh.edu.ru/

11

14

УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ
ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА
ОБЯЗАТЕЛЬНЫЕ УЧЕБНЫЕ МАТЕРИАЛЫ ДЛЯ УЧЕНИКА
• Математика: алгебра и начала математического анализа, геометрия.
Алгебра и начала математического анализа, 10 класс/ Колягин Ю.М.,
Ткачева М.В., Федорова Н.Е. и другие, Акционерное общество
«Издательство «Просвещение»
• Математика: алгебра и начала математического анализа, геометрия.
Алгебра и начала математического анализа, 11 класс/ Колягин Ю.М.,
Ткачева М.В., Федорова Н.Е. и другие, Акционерное общество
«Издательство «Просвещение»
М.И. Шабунин, Ткачева М.В., Газарян Р.Г. Алгебра и начала
математического анализа. Дидактические материалы 10 класс профильный
уровень.
М.И. Шабунин, Ткачева М.В., Газарян Р.Г. Алгебра и начала
математического анализа. Дидактические материалы 11 класс профильный
уровень.
МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ДЛЯ УЧИТЕЛЯ
Учебно-методическая помощь к УМК Алгебра и начала математического
анализа. Алимов Ш.А. (10-11) Базовый и углублённый уровни
ЦИФРОВЫЕ ОБРАЗОВАТЕЛЬНЫЕ РЕСУРСЫ И РЕСУРСЫ СЕТИ
ИНТЕРНЕТ

https://resh.edu.ru/


Наверх
На сайте используются файлы cookie. Продолжая использование сайта, вы соглашаетесь на обработку своих персональных данных. Подробности об обработке ваших данных — в политике конфиденциальности.

ВНИМАНИЕ!

Срок действия лицензии на использования программного обеспечения окончен 19.11.2024.
Для получения информации с сайта свяжитесь с Администрацией образовательной организации по телефону +7 (38474) 2-08-29, +7(38474) 2-55-51

Функционал «Мастер заполнения» недоступен с мобильных устройств.
Пожалуйста, воспользуйтесь персональным компьютером для редактирования информации в «Мастере заполнения».